Aller au contenu principal
Capital Fund Management recrutement

Machine Learning Research And Engineering H/F Capital Fund Management

Paris 7e - 75
CDI
Résumé de l'offre
  • 🏠 Télétravail occasionnel
  • Bac +5
  • Banque • Assurance • Finance

Les missions du poste

ABOUT CFM

Founded in 1991, we are a global quantitative and systematic asset management firmapplyinga scientific approach to finance to develop alternative investment strategies that create value for our clients.
We value innovation, dedication, collaboration, and the ability to make an impact. Together, we create a stimulating environment for talented and passionate experts in research, technology, and business to explore new ideas and challenge existing assumptions.

ABOUT THE ROLE

The Team

In close collaboration with the quantitative execution research team, the Trading Core & Model Technology (TCM) team is responsible for maintaining and developing a C++/Python stack dedicated to execution trading strategies.

Mostly C++ applications :
- Feed handlers to distribute real-time, low-latency market data to automatons.
- Execution libraries used by tick-by-tick trading automatons.
- Indicators used for execution signals.

Python/C++ applications :
- A tick-based machine learning pipeline used for execution strategies.
- Data collection for the calculation and distribution of execution cost analysis metrics.
- Analytical reports for execution research and compliance.

The team is also responsible for optimizing the tick to trade latency : from real-time market data reception to order sending and for building new ML execution models.

CFM is looking for an experienced and talented Machine Learning Research and Engineering expert
- To build new ML models to feed CFM's execution strategies.
- Contribute to the maintenance and improvement of this ML pipeline.

TheMission

As a ML expert, and in collaboration with your team - particularly the machine learning experts who drive the evolution of this pipeline - you will participate to the development of this tick-based ML pipeline by :
- Implementing new features in C++.
- Improving the data generation part of the pipeline (enrich indicators, fine tune data sets)
- Improving the training part of the ML pipeline (explore, propose, implement and evaluate the performance of new ML models, packages and frameworks)
- Improving the production part of the pipeline (optimize inference latency, realize non regression tests, participate in the maintenance of this pipeline)

The candidate should have both a research mindset to explore new ML ideas, frameworks and evaluate them rigorously and full Computer Science engineering abilities to contribute to the maintenance and improvement of industrial research to production pipeline.

Key Responsibilities

ML Research and Engineering :
- Explore and propose new ML ideas in collaboration with TCM and Execution teams
- Implement and evaluate new ML ideas, data, models, frameworks and inference.
- Participate in the maintenance of the platform (non-regression tests, migrations...)

Le profil recherché

Profile description :

Qualifications / Required Skills
- PhD (or equivalent experience) in Machine Learning, Computer Science, Data Engineering, or a related field (experimental or theoretical science, mathematics, physics, statistics, economics, etc.)
- Understanding of the ins and outs of machine learning algorithms
- Experience with applied machine learning on large datasets
- Proficiency in programming languages : a minimum of three years of experience in Python (and classical data and ML libraries, pandas/polars, scikit-learn, PyTorch, TensorFlow...) and experience in C++ is required but candidates with significantly more experience will BE considered with great interest.
- Although a high interest in finance is crucial, no prior knowledge in the field is needed.
- Experience with Linux.
- Proficiency in both French and English.
- Excellent collaboration and communication skills.
- Adaptable and rigorous, capable of working in a rapidly evolving environment.

Extra
- Experience with Cloud (AWS or others).
- Experience with SQL.

We offer :

EQUAL OPPORTUNITIES STATEMENT

We are continuously striving to BE an equal opportunity employer, and we prohibit any discrimination based on sex, disability, origin, sexual orientation, gender identity, age, race, or religion. We believe that our diversity, breadth of experience, and multiple points of view are among the leading factors in our success.
CFM is a signatory of the.

FOLLOW US

Follow us onoror visit ourto find out more about CFM.

Bienvenue chez Capital Fund Management

CAPITAL FUND MANAGEMENT S. A.

Hellowork a estimé le salaire pour ce métier à Paris

Le recruteur n'a pas communiqué le salaire de cette offre mais Hellowork vous propose une estimation (fourchette variable selon l'expérience).

Estimation basée sur les données INSEE et les offres d’emploi similaires.

Estimation basse

42 500 € / an 3 542 € / mois 23,35 € / heure

Salaire brut estimé

52 500 € / an 4 375 € / mois 28,85 € / heure

Estimation haute

68 800 € / an 5 733 € / mois 37,80 € / heure

Cette information vous semble-t-elle utile ?

Merci pour votre retour !

Machine Learning Research And Engineering H/F
  • Paris 7e - 75
  • CDI
Publiée le 06/05/2025 - Réf : CFM_8zeq1Jd

Finalisez votre candidature

sur le site du recruteur

Créez votre compte pour postuler

sur le site du recruteur !

Ces offres pourraient aussi
vous intéresser

PwC recrutement
PwC recrutement
Paris - 75
CDI
🏡 Télétravail partiel
Voir l’offre
il y a 22 jours
Axa partners recrutement
Malakoff - 92
CDI
Voir l’offre
il y a 17 jours
FACTOFRANCE SAS recrutement
Courbevoie - 92
CDI
50 000 - 70 000 € / an
🏡 Télétravail partiel
Voir l’offre
plus de 1 mois
Voir plus d'offres
Les sites
L'emploi
  • Offres d'emploi par métier
  • Offres d'emploi par ville
  • Offres d'emploi par entreprise
  • Offres d'emploi par mots clés
L'entreprise
  • Qui sommes-nous ?
  • On recrute
  • Accès client
Les apps
Application Android (nouvelle fenêtre) Application ios (nouvelle fenêtre)
Informations légales CGU Politique de confidentialité Gérer les traceurs Aide et contact
Nous suivre sur :