- Jobs
- Entreprises
-
Accès recruteur
-
Emploi
- Formation
-
Mon compte
-
Post-Doctoral Research Visit F - M Stochastic Modelling Of Dynamical Resource Allocation Analysis And Inference For Single-Cell Data H/F INRIA
- Montbonnot-Saint-Martin - 38
- CDD
- 12 mois
- Bac +5
- Service public des collectivités territoriales
Détail du poste
Post-Doctoral Research Visit F/M Stochastic modelling of dynamical resource allocation, analysis and inference for single-cell data
Le descriptif de l'offre ci-dessous est en Anglais
Type de contrat : CDD
Contrat renouvelable : Oui
Niveau de diplôme exigé : Thèse ou équivalent
Fonction : Post-Doctorant
A propos du centre ou de la direction fonctionnelle
The Centre Inria de l'Université de Grenoble groups together almost 600 people in 26 research teams and 9 research support departments.
Staff is present on three campuses in Grenoble, in close collaboration with other research and higher education institutions (Université Grenoble Alpes, CNRS, CEA, INRAE, ...), but also with key economic players in the area.
The Centre Inria de l'Université Grenoble Alpes is active in the fields of high-performance computing, verification and embedded systems, modeling of the environment at multiple levels, and data science and artificial intelligence. The center is a top-level scientific institute with an extensive network of international collaborations in Europe and the rest of the world.
Contexte et atouts du poste
The postdoctoral project will be carried out in the project-team MICROCOSME at Inria Grenoble - Rhône-Alpes under the joint supervision of Aline Marguet, Eugenio Cinquemani and Hidde de Jong within the framework of the ARBOREAL ANR project.
MICROCOSME is an interdisciplinary team that includes applied mathematicians, engineers, computer scientists, biologists as well as experimentalists from the biology/physics team BIOP of the Université Grenoble-Alpes.
Mission confiée
Gaining an understanding of the cellular processes underlying bacterial growth is crucial for fundamental research in biology as well as for applications in biotechnology, health, and environmental technology. New experimental technologies have been developed
to monitor growth and gene expression at the single-cell level, opening the path to the exploration of the origins of variability in growth phenotypes within a population of bacterial cells. So far, the data obtained from these technological breakthroughs have been exploited only in part. In particular, appropriate mathematical models and methods to relate single-cell gene expression data with the emergence of growth variabilityin a population are rare [1].
The ARBOREAL ANR project aims at developing a new mathematical framework for the analysis of growth variability from single-cell data, by combining structured branching processes [2, 3] with models of bacterial growth [4] at the single-cell level. We will obtain a
new class of stochastic individual-based models, called Branching Resource allocation Processes (BRP), that will enable investigation of the variability of growth phenotypes in a proliferating microbial population in terms of the variability of physiological and cell division processes. The development of the BRP framework will entail modelling, analysis, and inference, and will exploit microfluidics experiments comprising single-cell measurements of growth and expression levels of ribosomes and enzymes in the model organism Escherichia coli [5].
The proposed postdoc position involves the numerical simulation, analysis and inference of branching resource allocation processes and the application of this new framework to existing single-cell datasets in the team to study the onset of growth variability in bacterial
populations.
Principales activités
Using a variety of mathematical tools and algorithmic approaches (Continuous-Time Markov chains, Mixed-Effects modelling, Branching processes, stochastic simulation) as well as single-cell gene expression datasets, we will address several of the following points:
- Analyse the new BRP models (asymptotic behavior, comparison of population and lineage dynamics, compute the large population limit and compare with existing population-average resource allocation models).
- Develop numerical simulation tools for the BRP models.
- Develop analytical (least-squares, moment fitting, etc.) methods and/or sampling-based (MCMC) algorithms for the identification of unknown BRP model parameters from time-course, single-cell (growth and gene expression) measurements over cell lineages.
- Develop methods for estimation of unobserved intracellular processes from the data.Implement methods in Python or Julia.
- Use the BRP framework to analyse single-cell E. coli datasets from our laboratory [5]and other datasets to relate growth phenotypes on the population level to resourceallocation strategies on the single-cell level.
Bibliography.
[1] Thomas, P., G. Terradot, V. Danos, and A. Y. Wei e, Sources, propagation and consequences of stochasticity in cellular growth. Nat Commun 9:4528, 2018.
[2] A. Marguet, Uniform sampling in a structured branching population,Bernoulli, 25, pp. 2649-2695, 2019.
[3] S. Méléard and V. Bansaye, Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Springer Cham, 2015.
[4] N. Giordano, F. Mairet, J.-L. Gouzé, J. Geiselmann, and H. de Jong, Dynamical allocation of cellular resources as an optimal control problem: Novel insights into microbial growth strategies, PLoS Comput Biol, 12, p. e1004802, 2016.
[5] A. Pavlou, E. Cinquemani, C. Pinel, N. Giordano, M. Van Melle-Gateau, I. Mihalcescu, J. Geiselmann and H. de Jong. Single-cell data reveal heterogeneity of investment in ribosomes across a bacterial population. Nat Commun 16, 285 (2025).
Compétences
Interested candidates are expected to have a solid preparation in dynamical system / stochastic process modelling and analysis and some familiarity with scientific programming, and to be interested in biological applications and data processing.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage under conditions
Rémunération
2788 € gross salary / month
A propos d'Inria
Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'eorce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.
La carte
655 Avenue de l'Europe
38330 Montbonnot-Saint-Martin
Hellowork a estimé le salaire pour cette offre
Cette estimation de salaire pour le poste de Post-Doctoral Research Visit F - M Stochastic Modelling Of Dynamical Resource Allocation Analysis And Inference For Single-Cell Data H/F à Montbonnot-Saint-Martin est calculée grâce à des offres similaires et aux données de l’INSEE.
Cette fourchette est variable selon expérience.
Salaire brut min
36 200 € / an 3 017 € / mois 19,89 € / heureSalaire brut estimé
43 800 € / an 3 650 € / mois 24,07 € / heureSalaire brut max
51 200 € / an 4 267 € / mois 28,13 € / heureCette information vous semble-t-elle utile ?
Merci pour votre retour !
Publiée le 07/10/2025 - Réf : fdf32323e8d89cdc70f5ff114eb3c2a7
Post-Doctoral Research Visit F - M Stochastic Modelling Of Dynamical Resource Allocation Analysis And Inference For Single-Cell Data H/F
- Montbonnot-Saint-Martin - 38
- CDD
Créez une alerte
Pour être informé rapidement des nouvelles offres, merci de préciser les critères :
Finalisez votre candidature
sur le site du recruteur
Créez votre compte pour postuler
sur le site du recruteur !
sur le site du recruteur
sur le site du recruteur !
Ces offres pourraient aussi
vous intéresser
Recherches similaires
- Job Data scientist
- Job Informatique
- Job Grenoble
- Job Voiron
- Job Bourgoin-Jallieu
- Job La Tour-du-Pin
- Job Morestel
- Job Saint-Marcellin
- Job La Mure
- Job Villard-de-Lans
- Job Vienne
- Job Salaise-sur-Sanne
- Job Développeur
- Job Technicien support informatique
- Job Développeur Java
- Job Technicien informatique
- Job Tech lead
- Entreprises Informatique
- Entreprises Data scientist
- Entreprises Montbonnot-Saint-Martin
- Job Fonction publique
- Job Collectivités
- Job Fonction publique territoriale
- Job Data
- Job Vercors
- INRIA Montbonnot-Saint-Martin
- INRIA Data scientist
{{title}}
{{message}}
{{linkLabel}}