Aller au contenu principal
CEA emploi
CEA recrutement

Learning To Focus Physics-Informed Deep Learning For Super-Resolved Ultrasonic Phased-Array Imaging H/F CEA

  • Gif-sur-Yvette - 91
  • Stage
  • Bac +5
  • Industrie high-tech • Telecom
Lire dans l'app

Les missions du poste

Ultrasonic phased-array imaging is a core technology in non-destructive testing (NDT) for detecting defects such as cracks or voids in industrial components. By electronically steering ultrasonic beams, phased arrays generate detailed 3D images of internal structures. The Total Focusing Method (TFM) is the standard reconstruction algorithm, achieving diffraction-limited resolution by coherently summing signals from all emitter-receiver pairs.
However, conventional TFM suffers from key limitations: its resolution is constrained by diffraction and array pitch, grating lobes degrade image quality, and it assumes uniform sound velocity. It also struggles to resolve sub-wavelength defects, limiting its effectiveness in complex or heterogeneous materials.
Recent deep learning methods have improved ultrasonic imaging through denoising and super-resolution, but most operate as black boxes without physical interpretability. They often fail to generalize across array geometries or material conditions.
This internship proposes a physics-informed deep learning framework that integrates physical modeling of ultrasonic propagation into neural architectures. Instead of static delay-and-sum focusing, the approach learns adaptive, reweighted focusing kernels that enhance resolution while maintaining interpretability.
The research is structured around six axes:
Reweighted TFM: learn per-pixel focusing weights through supervised or self-supervised training for adaptive, interpretable imaging.
Grating-lobe analysis: study array pitch effects and compare learned PSFs with theoretical models.
Tiny defect imaging: test the method on sub-wavelength defects using synthetic and experimental data.
Coded excitation: train models for artifact-free imaging under simultaneous transmit-receive schemes for faster acquisition.
Sound speed estimation: incorporate differentiable beamforming to jointly estimate material properties and focus adaptively.
Transformer-based characterization: use multi-angle scattering data and attention mechanisms for defect classification and interpretation.
Expected outcomes include a new interpretable deep model for ultrasonic imaging, quantitative grating-lobe suppression analysis, and demonstration of sub-wavelength defect detection.
This project bridges data-driven learning and physical modeling, leading to more robust, adaptive, and explainable ultrasonic imaging systems. The resulting framework could significantly enhance industrial inspection and structural health monitoring by achieving super-resolution, real-time imaging of complex materials.
Detailed research proposal here.

The ideal candidate will have a Master's degree in Electrical Engineering, Applied Physics, Computer Science, or a related discipline. A strong background in signal and image processing, deep learning (PyTorch, TensorFlow), and programming in Python is expected.
Prior experience with acoustic or ultrasonic imaging, inverse problems, or physics-informed machine learning will be considered a strong advantage.

  • Télétravail jusqu’à 3 jours par semaine
  • 52 jours de congés/RTT
  • Possibilité d’aménagement du temps de travail
  • Formation personnalisée
  • Restauration d’entreprise
  • Offre de transport interne et prise en charge Navigo and co,
  • Mutuelle d’entreprise avantageuse
  • CE (aides vacances, loisirs, frais de garde, scolarité des enfants etc

Les étapes de recrutement

Les étapes de recrutement peuvent varier selon l'offre à laquelle vous postulez.

  • Dépôt de CV via notre site carrière

  • Préqualification téléphonique

  • Entretiens et évaluation avec manager et RH

  • Négociation salariale et contrat de travail

  • Embauche et intégration

0 / 9

La carte

19510 D36

91190 Saclay

Localiser le poste

Publiée le 13/12/2025 - Réf : 2025-38197

Learning To Focus Physics-Informed Deep Learning For Super-Resolved Ultrasonic Phased-Array Imaging H/F

CEA
  • Gif-sur-Yvette - 91
  • Stage

Pour les postes éligibles :

Télétravail partiel
Publiée le 13/12/2025 - Réf : 2025-38197

Finalisez votre candidature

sur le site du recruteur

Créez votre compte pour postuler

sur le site du recruteur !

Voir plus d'offres
Initialisation…
Les sites
L'emploi
  • Offres d'emploi par métier
  • Offres d'emploi par ville
  • Offres d'emploi par entreprise
  • Offres d'emploi par mots clés
L'entreprise
  • Qui sommes-nous ?
  • On recrute
  • Accès client
Les apps
Application Android (nouvelle fenêtre) Application ios (nouvelle fenêtre)
Nous suivre sur :
Informations légales CGU Politique de confidentialité Gérer les traceurs Accessibilité : non conforme Aide et contact