- Jobs
- Entreprises
- 
                        Accès recruteur
- 
                        Emploi
- Formation
- 
                        Mon compte
- 
                        
 
            
    Internship - Generative Modeling For Synthetic Time-Series Via Stochastic Interpolant H/F Capital Fund Management
- Paris 7e - 75
- Stage
- Télétravail occasionnel
- Bac +5
- Banque • Assurance • Finance
        
            
            Les missions du poste
        
    
    ABOUT CFM
Founded in 1991, we are a global quantitative and systematic asset management firm applying a scientific approach to finance to develop alternative investment strategies that create value for our clients.  
We value innovation, dedication, collaboration, and the ability to make an impact. Together, we create a stimulating environment for talented and passionate experts in research, technology, and business to explore new ideas and challenge existing assumptions.
Summary
Build and stress-test generative models based on flow matching/stochastic interpolants for synthetic time-series. You will create controllable synthetic datasets (with tunable noise, nonlinearity, regime changes, and exogenous controls) and/or adapt benchmarks from the literature, compare neural architectures (MLPs, Transformers, etc.) and training strategies, and quantify:
Sample complexity and data efficiency across architectures  
Whether learning a full conditional distribution improves accuracy when we only care about conditional means  
Out-of-support generalization with control variables (how far can we extrapolate?)
Motivation
Diffusion-style generative models (flow matching / stochastic interpolants) work remarkably well for images and text, but their behavior on structured time-series-especially with controls and mixed scalar/sequence inputs-is less well understood. Also, in realistic settings we are in a limited data regime, which is not encountered in vision or NLP. This project asks: which architectures and training choices are most data-efficient, when is generative modeling worth it versus simple regressions, and how robust are these models to shifts in inputs statistics?
These are the main questions of interest; the internship will prioritize a subset based on progress and the intern's interests.
Prerequisites: comfort with Python/PyTorch and basic probability/ML. Curiosity about generative modeling and careful experimental design.
EQUAL OPPORTUNITIES STATEMENT 
We are continuously striving to be an equal opportunity employer and we prohibit any discrimination based on sex, disability, origin, sexual orientation, gender identity, age, race, or religion. We believe that our diversity, breadth of experience, and multiple points of view are among the leading factors in our success.  
CFM is a signatory of the .
FOLLOW US 
Follow us on  or  or visit our  to find out more about CFM.
                    Profile description:
Prerequisites: comfort with Python/PyTorch and basic probability/ML. Curiosity about generative modeling and careful experimental design.
                
CAPITAL FUND MANAGEMENT S. A.
Pas de salaire renseigné
Publiée le 31/10/2025 - Réf : CFM_VGolRZN
Créez une alerte
Pour être informé rapidement des nouvelles offres, merci de préciser les critères :
Internship - Generative Modeling For Synthetic Time-Series Via Stochastic Interpolant H/F
- Paris 7e - 75
- Stage
					
						Finalisez votre candidature
						sur le site du recruteur
					
					
						Créez votre compte pour postuler
						sur le site du recruteur !
					
			
		sur le site du recruteur
sur le site du recruteur !
            Ces offres pourraient aussi 
 vous intéresser
        
     
     
     
    Recherches similaires
- Job Ingénieur des procédés
- Job Production
- Job Opérateur de production
- Job Soudeur
- Job Conducteur de ligne
- Job Agent de production
- Job Technicien de maintenance
- Entreprises Production
- Offre de stage Production
- Entreprises Ingénieur des procédés
- Entreprises Paris
- Offre de stage Paris
- Offre de stage Paris
- Offre de stage Ingénieur des procédés
- Offre de stage Ingénieur des procédés Paris
- Job Management
- Job Asset management
- Job Support
- Job Multiple
{{title}}
{{message}}
{{linkLabel}} 
    