Aller au contenu principal
INRIA recrutement

Phd Position F - M Filippov Solutions For Discontinuous Differential-Algebraic Equations Daes Control And Simulation H/F INRIA

Rennes - 35
CDD
Résumé de l'offre
  • 36 mois
  • Service public des collectivités territoriales

Les missions du poste

PhD Position F/M Filippov Solutions for Discontinuous Differential-Algebraic Equations (DAEs) : Control and Simulation
Le descriptif de l'offre ci-dessous est en Anglais
Type de contrat : CDD

Niveau de diplôme exigé : Bac +5 ou équivalent

Fonction : Doctorant

A propos du centre ou de la direction fonctionnelle

The Inria Rennes - Bretagne Atlantique Centre is one of Inria's eight centres and has more than thirty research teams. The Inria Center is a major and recognized player in the field of digital sciences. IT is at the heart of a rich R&D and innovation ecosystem : highly innovative PMEs, large industrial groups, competitiveness clusters, research and higher education players, laboratories of excellence, technological research institute, etc.

Contexte et atouts du poste

Collaboration& Contacts
- This PhD is conducted in collaboration with Prof. Stephan Trenn at the University of Groningen (The Netherlands). The selected candidate is expected to visit Groningen regularly.
- There is also the possibility of pursuing a double doctoral degree, which would include a 1-year extension to meet Dutch PhD requirements.
- This position will BE funded by ANR JCJC Project : GFdDAE (ANR-25-CE48-4916)
- Contacts :,,

Context & Background

Differential-algebraic equations (DAEs) arise naturally when modeling dynamical systems from first principles. In many cases, physical laws are expressed as combinations of differential and algebraic equations. This modeling approach is common in constrained mechanics, chemical and biological processes, power systems, and especially analog circuit design-where idealized components (e.g., resistors, capacitors, inductors) and Kirchhoff's laws define the system dynamics. When these systems experience abrupt changes-such as switching in electric circuits, mechanical contacts, or discontinuous control inputs-discontinuous DAEs emerge. However, there is currently no comprehensive theoretical foundation for studying such systems. Challenges include :
- Their hybrid behaviors, which differ significantly from ODE counterparts,
- The inconsistent initialization problem caused by switching and algebraic constraints,
- The occurrence of Dirac impulses due to state jumps.

Without a rigorous solution concept, tasks such as simulation, stability analysis, and control design lack solid justification.

Discontinuous DAEs are relevant across many research areas, including systems and control, hybrid systems, and computer-aided simulation. A notable example is switched DAEs. While time-dependent switching has been extensively studied [2-5], progress on state-dependent switching, a subclass of discontinuous DAEs, remains limited.

The Hycomes team at Inria Rennes has contributed to related research through the concept of multi-mode DAEs, in the context of the Modelica language [6-7]. Despite these advancements, challenges persist, including :
- Computing consistent initial values and jumps,
- Managing sliding and chattering behaviors,
- Addressing scalability for large-scale, high-dimensional systems.

These issues emphasize the need for refined mathematical foundations and advanced control methods compatible with Modelica-based simulation platforms.

[1] D. Liberzon. Switching in Systems and Control. Systems and Control : Found. and Appl. Boston : Birkhäuser, 2003.

[2] D. Liberzon and S. Trenn. On stability of linear switched differential algebraic equations. In : Proc. IEEE CDC 2009, pp. 2156-2161.

[3] D. Liberzon and S. Trenn. Switched nonlinear differential algebraic equations : Solution theory, Lyapunov functions, and stability. In : Automatica 48.5, pp. 954-963.

[4] Y. Chen and S. Trenn. Impulse-free jump solution of nonlinear differential algebraic equation. In : Nonlinear Analysis : Hybrid Systems 46 (2022), p. 101238.

[5] Y. Chen and S. Trenn. On impulse-free solutions and stability of switched nonlinear differential-algebraic equations. In : Automatica 156 (2023), p. 111208

[6] A. Benveniste, B. Caillaud, and M. Malandain. The mathematical foundations of physical systems modeling languages. In : Ann. Rev. in Control 50 (2020), pp. 72-118.

[7] A. Benveniste, B. Caillaud, M. Malandain, and J. Thibault. Algorithms for the structural analysis of multimode modelica models. In : Electronics 11.17 (2022), p. 2755.

[8] A.F. Filippov. Differential Equations with Discontinuous Right-hand Sides. English (Transl. from the Russian). Mathematics and Its Applications : Soviet Series, 18. Dordrecht etc. : Kluwer Academic Publishers, 1988.

[9] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, et al. Sliding Mode Control and Observation. Vol. 10. Springer, 2014

Mission confiée

For discontinuous ODEs, the Filippov solution framework [8] plays important roles both theoretically (e.g., in switching ODE systems [1] and sliding mode control [9]) and practically (e.g., via Filippov-type solvers in MATLAB). This PhD project aims to :
- Extend the Filippov solution concept to discontinuous DAEs,
- Integrate the proposed framework into simulation tools, particularly Modelica.

Principales activités

The PhD student will focus on the following tasks :
- Conduct a thorough literature review of discontinues DAEs and related systems (e.g., complementarity systems, switching DAEs, hybrid systems).
- Starting withdiscontinuous linear DAEs, propose a solution concept and provewell-posedness.
- Extend the theory tononlinear systemsand compare IT with other existing frameworks.
- Performstability analysisand developstabilization orcontrol strategiesfor discontinuous DAEs.
- Implement simulation methods inModelica tools, and test them on benchmark examples.

Deliverablesinclude scientific reports, papers submitted to international conferences and journals, and prototype simulation code.

Compétences

Technical Skills
- Solid understanding of system modeling, control theory, and differential equations
- Familiarity with any of the following topics would BE appreciated :
- DAEs, switched systems, complementarity systems, sliding mode control;
- hybrid systems simulation, Modelica;
- power electronics, contact mechanics, multiphysics modeling.

Avantages
- - Subsidized meals
- Partial reimbursement of public transport costs
- Possibility of teleworking (90 days per year) and flexible organization of working hours
- Partial payment of insurance costs

Rémunération

monthly gross salary 2200 Euros

Bienvenue chez INRIA

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'eorce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

Phd Position F - M Filippov Solutions For Discontinuous Differential-Algebraic Equations Daes Control And Simulation H/F
  • Rennes - 35
  • CDD
Publiée le 23/07/2025 - Réf : 88fdbe8ba959c36951f08436682eabdd

Finalisez votre candidature

sur le site du recruteur

Créez votre compte pour postuler

sur le site du recruteur !

Voir plus d'offres
Les sites
L'emploi
  • Offres d'emploi par métier
  • Offres d'emploi par ville
  • Offres d'emploi par entreprise
  • Offres d'emploi par mots clés
L'entreprise
  • Qui sommes-nous ?
  • On recrute
  • Accès client
Les apps
Application Android (nouvelle fenêtre) Application ios (nouvelle fenêtre)
Nous suivre sur :
Informations légales CGU Politique de confidentialité Gérer les traceurs Accessibilité : non conforme Aide et contact