Aller au contenu principal
INRIA recrutement

Engineer Position Automatic Speech Recognition For Non-Natives Speakers In a Noisy Environment H/F INRIA

Villers-lès-Nancy - 54
CDD
Résumé de l'offre
  • 12 mois
  • Service public des collectivités territoriales

Les missions du poste

engineer position : Automatic speech recognition for non-natives speakers in a noisy environment
Le descriptif de l'offre ci-dessous est en Anglais
Type de contrat : CDD

Niveau de diplôme exigé : Bac +5 ou équivalent

Fonction : Ingénieur scientifique contractuel

Niveau d'expérience souhaité : Jeune diplômé

Contexte et atouts du poste

The work will BE performed at MultiSpeech Team of INRIA-LORIA, Nancy.

MULTISPEECH is a joint research team between theUniversité of Lorraine, Inria, andCNRS. IT is part of department D4 Natural language and knowledge processing ofLORIA.

Its research focuses on speech processing, with particular emphasis tomultisource(source separation, robust speech recognition), multilingual(computer assisted language learning), andmultimodalaspects.

Mission confiée
ContextWhen a person has their hands busy performing a task like driving a car or piloting an airplane, voice is a fast and efficient way to achieve interaction. In aeronautical communications, the English language is most often compulsory. Unfortunately, a large part of the pilots are not native English and speak with an accent dependent on their native language and are therefore influenced by the pronunciation mechanisms of this language. Inside an aircraft cockpit, non-native voice of the pilots and the surrounding noises are the most difficult challenges to overcome in order to have efficient automatic speech recognition (ASR). The problems of non-native speech are numerous : incorrect or approximate pronunciations, errors of agreement in gender and number, use of non-existent words, missing articles, grammatically incorrect sentences, etc. The acoustic environment adds a disturbing component to the speech signal. Much of the success of speech recognition relies on the ability to take into account different accents and ambient noises into the models used by ARP.Automatic speech recognition has made great progress thanks to the spectacular development of deep learning. In recent years, end-to-end automatic speech recognition, which directly optimizes the probability of the output character sequence based on the input acoustic characteristics, has made great progress [Chan et al., 2016; Baevski et al., 2020; Gulati, et al., 2020].ObjectivesThe recruited person will have to develop methodologies and tools to obtain high-performance non-native automatic speech recognition in the aeronautical context and more specifically in a (noisy) aircraft cockpit.This project will BE based on an end-to-end automatic speech recognition system.References[Baevski et al., 2020] A. Baevski, H. Zhou, A. Mohamed, and M. Auli. Wav2vec 2.0 : A framework for self-supervised learning of speech representations, 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.[Chan et al., 2016] W. Chan, N. Jaitly, Q. Le and O. Vinyals. Listen, attend and spell : A neural network for large vocabulary conversational speech recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 4960-4964, 2016.[Chorowski et al., 2017] J. Chorowski, N. Jaitly. Towards better decoding and language model integration in sequence to sequence models. Interspeech, 2017.[Houlsby et al., 2019] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, S. Gelly. Parameter-efficient transfer learning for NLP. International Conference on Machine Learning, PMLR, pp. 2790-2799, 2019.[Gulati et al., 2020] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang. Conformer : Convolution-augmented transformer for speech recognition. Interspeech, 2020.[Shi et al., 2021] X. Shi, F. Yu, Y. Lu, Y. Liang, Q. Feng, D. Wang, Y. Qian, and L. Xie. The accented english speech recognition challenge 2020 : open datasets, tracks, baselines, results and methods. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6918-6922, 2021.
Principales activités

The main activities are those typical of a engineer. They include : literature reading, scientific development, programming and simulation, data processing, reporting and presentation, paper writing, collaboration with the team, the supervisors and other scientific partners.

Duration : 9-12 months

Applications will BE examined subject to the requirements of the Directorate General of Armaments (DGA).

Compétences
- M.Sc. orengineer degree in speech/audio processing, computer vision, machine learning, or in a related field, - ability to work independently as well as in a team, - solid programming skills (Python, PyTorch), and deep learning knowledge, - good level of written and spoken English.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave : 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage

Rémunération

From 2692€ gross/month according to experience

L'adresse du poste

Localisez l'entreprise et calculez votre temps de trajet en un clic !

Calculer mon temps de trajet

Bienvenue chez INRIA

A propos d'Inria

Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'eorce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.

Engineer Position Automatic Speech Recognition For Non-Natives Speakers In a Noisy Environment H/F
  • Villers-lès-Nancy - 54
  • CDD
Publiée le 03/06/2025 - Réf : 66705de890f48f4a6e3ce0ed5a3c8149

Finalisez votre candidature

sur le site du recruteur

Créez votre compte pour postuler

sur le site du recruteur !

Voir plus d'offres
Les sites
L'emploi
  • Offres d'emploi par métier
  • Offres d'emploi par ville
  • Offres d'emploi par entreprise
  • Offres d'emploi par mots clés
L'entreprise
  • Qui sommes-nous ?
  • On recrute
  • Accès client
Les apps
Application Android (nouvelle fenêtre) Application ios (nouvelle fenêtre)
Informations légales CGU Politique de confidentialité Gérer les traceurs Aide et contact
Nous suivre sur :